Structure Reports

Online

N-(4-Chloro-3-nitrophenyl)- \mathbf{N}^{\prime}-(3-nitrobenzoyl)thiourea

ISSN 1600-5368

M. Sukeri M. Yusof, ${ }^{\text {a }}$ © S. Sarah A. Rahim ${ }^{\text {a }}$ and Bohari M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical Sciences, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and
${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
mohdsukeri@kustem.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.113$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title molecule, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}$, all bond lengths and angles show normal values. The mean plane of the central thiourea unit, $\mathrm{N}_{2} \mathrm{CS}$, makes dihedral angles of 9.54 (12) and $56.60(10)^{\circ}$, respectively, with the mean planes of the 3nitrobenzoyl and 4-chloro-3-nitrophenyl groups. The crystal packing is stabilized by weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Substituted thiourea compounds have found applications in the rubber and dye industries (Ramadas et al., 1993). Some of their derivatives exhibit biological activity (Baruah et al., 2002). The title compound, (I), is analogous to N-benzoyl $-N^{\prime}$ phenylthiourea, (II) (Yamin \& Yusof, 2003). The molecule has a trans-cis configuration with respect to the positions of the 3nitrobenzoyl and 4-chloro-3-nitrophenyl groups relative to the thiono S 1 atom across the $\mathrm{C} 8-\mathrm{N} 3$ and $\mathrm{C} 8-\mathrm{N} 4$ bonds, respectively (Fig. 1). The bond lengths and angles (Table 1) are in normal ranges (Allen et al., 1987) and are comparable with those in (II). The mean plane of the central thiourea unit, $\mathrm{N}_{2} \mathrm{CS}$, makes dihedral angles of $9.54(12)$ and $56.60(10)^{\circ}$, respectively, with the mean planes of the 3-nitrobenzoyl and 4-chloro-3-nitrophenyl groups. The dihedral angle between the two aromatic rings is $62.09(13)^{\circ}$.

There is an intramolecular hydrogen bond ($\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 3$; Table 2) which forms a pseudo-six-membered ring (N3$\mathrm{H} 3 \cdots \mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$). In the crystal structure, the molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) into a two-dimensional network parallel to the $b c$ plane (Fig. 2).

Experimental

An equimolar amount of 4-chloro-3-nitroaniline ($1.86 \mathrm{~g}, 11 \mathrm{mmol}$) in 20 ml acetone was added dropwise to a stirred acetone solution (75 ml) containing 3-nitrobenzoyl chloride ($2.0 \mathrm{~g}, 11 \mathrm{mmol}$) and ammonium thiocyanate ($0.82 \mathrm{~g}, 11 \mathrm{mmol}$). The solution was refluxed for 1 h and then poured into a beaker containing some ice blocks. The
resulting light-yellow precipitate was filtered off and washed with distilled water and cold ethanol before being dried under vacuum. Good quality crystals were obtained by recrystallization from chloroform (yield $72 \%, 2.63 \mathrm{~g}$; m.p. 489.3-491.7 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}$
$M_{r}=380.77$
Triclinic, $P \overline{1}$
$a=7.7327$ (14) \AA
$b=7.8617(14) \AA$
$c=14.368$ (3) \AA
$\alpha=102.041$ (3) ${ }^{\circ}$
$\beta=94.257$ (3) ${ }^{\circ}$
$\gamma=112.213$ (3) ${ }^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.852, T_{\text {max }}=0.956$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0619 P)^{2}\right. \\
+0.2966 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C8	$1.650(2)$	N3-C8	$1.334(3)$
N2-C8	$1.397(3)$	N3-C9	$1.416(3)$
O3-C7-N2	$122.1(2)$	N3-C8-S1	$125.45(17)$
N3-C8-N2	$115.1(2)$	N2-C8-S1	$119.48(17)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 . O 3	0.86	1.92	2.616 (3)	138
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.50	3.165 (3)	135
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {i }}$	0.93	2.47	3.279 (4)	146
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {ii }}$	0.93	2.34	3.264 (3)	175
C10-H10 \cdots O5 ${ }^{\text {iiii }}$	0.93	2.59	3.242 (4)	128
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 1^{\text {iv }}$	0.93	2.48	3.401 (3)	169
Symmetry codes: $-x+1,-y,-z+2$	$x, y+$	ii) $x+$	$+1 ; \quad \text { (iii) }$	$1, y, z ; \quad \text { (iv) }$

After their location in a difference map, all H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. The dashed line denotes an intramolecular hydrogen bond.

Figure 2
Packing diagram for (I), viewed down the a axis. The dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia and Kolej Universiti Sains dan Teknologi Malaysia for research grants IRPA No. 09-02-02993 and KUSTEM fundamental research grants No. 54221.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baruah, H. L., Reactor, C. M., Monier, S. \& Bierbach, U. (2002). Biochem. Pharmacol. 64, 191-200.
Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ramadas, K., Srinivasan, N. \& Janarthanan, N. (1993). Tetrahedron Lett. 34, 6447-6450.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, B. M. \& Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

